
-

/'

o (£'

THE UNIVERSITY OF MICHIGAN

jwb im

Mtmormmänm IJ

CONCOMP

MAD/I UNOUAOE

cy

NATIONAL TECHNICAL
INFORMATION SERVICE

BEST
AVAILABLE COPY

THE UNIVIRttTY OP MICHIOAM

mmowMAvm 31

OIPAULTS AND BLOCK STBÜCfüRE IN THE HAO/I LANCUAGI

Alion Spnnqtrr

CONCONPi Research in Conversational Uta of Conpatars
ORA Project 07449

P.H. Westarvalt, Director

supported by:

DEPARTMENT OP DEPENSE
ADVANCED RESEARCH PROJECTS AGENCY

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER MO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

July 1970

ACKMOMLMKaigNTt

TtM» «uthor would Ilk« to aoknowlod^o itw support

of tho CONCOMP Projecti IBM. who sont th« «uthor on «n

IBM lloaidc tt Study ProqrMi: «nd «spociAUy hi« co-worksrs

on th« MAO/1 compiler, Bruc« Bol««« Hon«Id Srod«w«.

Ch«rl«« Enqlo, 0«vid Mills, Pr«d Sw«rt«i «nd th« MAO/I

coordin«tor«f Profs. Bernard G«ll«r «nd Bruc« Ardon.

--%,

111

TABU OP CONTBNTS

ACKNOWLCDGNENTO til

1. Introduction 1

2. Default» in MAO/X 3

3. Block Structure in MAO/I f>

4. Th« Organiiation of th« Compiler 13

5. The Block Structure Algorithm 17

6. Conditional Declaration Handling in MAD/I. . . 25

7. Some Implementation Details 27

8. Conclusion 32

1. XNTPODUCTION

This paper d«tcr«b«s tn« default and block struc-

ture iMchani«u of NAO/I« « PL/Z-lik« Un^ua^c. and tn««

interaction of thot« mechamams with the throe types of

MAO/I declarationst explicit declarations, default dec-

larations, and conditional declarations. MAD/I allows

the programmer extraordinary control over the default

assignment of data types to variables, and also allows

the prograiruner more than usual control over the scope

of variable names in block structure. The interaction

of these two facilities can make the handling of declar-

ation information a difficult problem. This paper out-

lines an algorithm in which this information is processed

"on the fly" in the first pass of the compiler over the

source program, and then the symbol table is processed

to assign defaults and allocate storage. A simple second

pass over a transformed version of the source text re-

solves the scope and interpretation of variable names.

MAD/I is a computer language under development at

the University rf Michigan Computing Center, sponsored

by the CONCOMP Project. It can be thought of as a re-

mote descendant of 7090 MAD and ALGOL 60, with PL/I being

a not-too-distant relative. However, MAD/I and its com-

piler have some unusual features that aid language modifi-

cation and extendibility, although these features are

bayond cite tcopv of this paper. Kxcept for block «truc-

tur« scope tacilitiei «nd the default setting facilities*

men, MAD/1 ma/ bv rcqdrded as simply another represents-

tive of tho cldSH of procedural l.inquaqes which includes

ALGOL 60 and PL/I.

Briefly, MAO/I nas blocks, as in PL/I and ALGOL 60.

Like PL/X (but unlike ALGOL 60), declarations may occur

anywhere within a block, and are not required for all

variables in the program. If some attributes of a vari-

able are net declared then they are given "default"

values. 3uch attributes include storage class (e.g.,

static, based, etc.) and data type. The facilities for

specifying the defaults are very different from those

of PL/I, and are a generalization of those of 7090 MAD.

The scope of a variable is determined in much the same

spirit as in ALGOL 60 and PL/I, but the programmer has

more control over the specification of scope, including

the scope of variables which are not declared. This

makes determining scope and determining defaults a com-

plicated problem.

2. DEfAULTS IN HAD/I

Th« d«(«uU fBiqmmnt of data typ«« it don« in

« very syatMutic «nd general Banner. At any point

within the prograM there is defined a current default

data type. This default data type may be declared by

the prograomor on a block basis. A special symbol,

•DEFAULT', is used to carry the default information,

and is treated like a variable when in the context of

declarations, but otherwise it is not written by the

programmer.

The default data type is given to any variable for

which no data type has been explicitly declared. For

some data types one can declare a "sub-data-type," such

as the component data type of an array, the data type

of the result returned from a subroutine, or the data

type of a component of a structure. If such a "sub-

data-type" is not specified then it is given the de-

fault data type. For example, assume that the default

has been declared as follows:

1 DECLARE' 'DEFAULT' 'INTEGER'

Then assume the following declaration:

• DECLARE' A 'FIXEDARRAY'(4,4)'FLOATING',
B 'FIXEDARRAY'(4,4);

The mode of both A and B is 'FIXEDARRAY', with dimen-

sion 4x4. The component data type of A was explicitly

declared to be 'FLOATING'. Since the component data

iyp« of t it not «xpUcitly <tocUr#4t it !• t«li«n to

IM th« d«f«ult, 'IMTBOEH*. If MM« other VACIAbl« thdt

bolon9«d to that block «or» r«{«r«ncod *n tho block but

no docUration Had« «bout its d«t« type thon it would

also be «••iqned 'nrrBGBR* d«t« typ«.

Thor« «r« oincr cdnos whor« default actions occur

in HAO/I. Thty will bo nentionod briefly here although

they are not involved in the reat ot thia paper. The

dimenaion information qiven in the above example ia

apocified in a declaration "auf fix." If auch a auf fix

ia omitted for declarations ^here they are normally ex-

pected, then a default aet of information ia assumed

for the missing information. For ixample, in the case

of an item of 'CHARACTER* mode, tnc auffix apecifies

how many characters the variable haa. If the auffix

is omitted, the number of characters la assumed to be

one. If the dimension information were omitted above,

a warning message would be laaued, and an array which

has one dimension and one component would result. The

lexical class of constants specifies an implicit data

type which they are assigned, unleaa a declaration is

explicitly written which specifies some other data

type. As an example, the constant 5 will be assigned

•INTEGER* data type (32 bits long on the IBM 360),

whereas SSCINTEGERSHORT1) produces a conatant 16-bit

integer.

Tu«*« iwo lyfwrt of 4ef«uU operfttioiMi «r« prvMintly

not eotttroil«itil» «ny r^nho» by IM» {Mro^rMVktr. for

• af t4»c» tit« d«t«ttU if «liOCiAttfd Wllh th« MMl« IA-

volv««!. roi eonttAntt lim d«fAttU it MtociAtod with

tit« l«»io4l eUet ot tu« ty«bol. It «ould UP pottibl«

to iwive tn«»« acr«uu* «leo eontroiUt»!» by tu« pro-

•iraMfxpt iiy «Odtnq tpooiAi docUr«ttofit to tlu» Ui^tMKi««

but tlu» h»m not y«t IMWH Ooo«.

Thr ^«fAttlt 4aia typ« in th« out«niost block tt

•rioATiuc «mUsa tt ia «xpUcttiy d«el«r«d to b«

tbinq els«, for any otftor block tn« d«f«alt is th«

«• for th« no»t outer blocli uniett it %»«• explicitly

d«cl«r«d in th« inn«r block. If * d«fault nod« Is d»-

cUrvd, but not conplotslyt th«n th« r«M«ind«r of th«

d«f«uU is t»¥vn from thm default of th« n«Kt out«r

block. This Is don« in «xactly th« saas M«nn«r in

«rhich dafaulta ar« appliad to a variabl« whoa« "sub-

data-typ«* nay not hav« b««r d«clar«d. As an «xas^l««

aaaun« that in tn« out«r block th« dafault Is 'BOOUKMI*.

Assume that the default ia then declared as follows in

the inner blockt * DECLARE' *DEFAULT* *PIXEDAREAY*(10)i

Thus the oxKponent of the inner block's default is not

explicitly specified. It win be mule the data type of

the default of the next outer block, 'BOOLEAN*. Gener-

ally the default propagatea inward fro« the next outer

block, in a manner similar to the propagation of scope

of variables.

I. SLOCK iTIIUCTUflt IN MAO/I

Ttrnt* «re tnr»« ocmceptt «nbodicd in block ttruc-

tur» «• It if tr«dition*lly tpocifl^d in AU30L 60 and

• imUr Un<9a«f«e. Typicfliy tim blook it denoted by

» iM^innin^ k«y«#ord and «n ending ii«y%ford. In ALGOL

« bloc« h«» ihr«« functrisi (1) to apvcify tcop« of

v«ri«i>l«t, (i) it tptfcHy th« dyname nature of stor-

• i«' «1 location for certain claaaca of vdriablaa« and

(3) to .|r«»\i| atatenentt. In PL/I in« grouping effect

can alao be obtained witn a 00 atateiwnt as eel I a*

eitn a fteule atateatnt. In MAO/I the 'aeciN' atatcaent

la uaed for aiaple qroupiiHi of atatooenta* and the other

two facilitiea are apecified by *BL0CX* or 'PKnCKOURE'.

corretpondin^ to IKSIM and PROCtOUIIt in PL/I. Thua

NAO/I ha» facilitiea »lailar to thoae of PL/I, although

with different naaea.

The acope in ehich a variable la knoen la detemined

rather amply in ALGOL. If a variable la declared in a

9iven block« that variable*a naae repreaenta a differ-

ent variable fro« one of the aaae naae in the next outer

block. If a variable ia uaed in an inner block but n* *

declared there» then it ia the aaae variable aa one of

the aaa» naa» in the next outer block, finally. In

ALGOL 60 all vanablea nuat be explicitly or iaplicitly

declared in M.r outemoat blo^k in which they are to

be known.

Ir. *U0 I "..'.• "ntnir^" or «ccp« tuW* *:*• *ii~*.'.u

to tnot« of ALGOL 60, but thor« «r« addition«! rulos

allowing tho prograanor aoro control ovor tho *na«ing*

facility. In MMi/l tha uaar doaa not hava to daclara

a variable at all; tharafora ha naada eonvantiona in

ordar to know in which block an undaclarad variable

balonga. In PL/I tho rule apparently ia that a da-

clarad variable balonga to the outeraoat block in which

it ia declared. If it ia not declared, then it balonga

to the outeraoat block.

Let ua activate the additional rules Cor aaaigning

defaulta to ayabola. by writing a large block and

specifying the default within that block, the user can

avoid writing a large nuaber of individual declarations

for variablea in that block. But if the block ia an

inner one, then, following the PL/X rule, variables

that are not declared in that block would belong to the

next outer block and would not be affected by the de-

fault. What is desired, in scan oases, is that unleas

otherwise specified, any variable uaed in a block is

declared in that block iaplicitly. Zn other caaes we

would want to have the PL/I rule. Thus we have aodi-

fibd the acope rules for MAD/I as followst

(1) If no default is declared for a block then

the only symbols that belong to that block

are those that are declared in the block.

(2) If a default is declared in a block# but

'NEW* has not been declared for that de-

fault symbol, then symbols that have not

been declared in the block are treated as

if they were referenced in the next outer

block.

(3) If default was declared for the block and

'NEVT' was also declared for the default,

then, unless otherwise specified (by rules

below), all symbols referenced in the block

are implicitly declared in the block.

Note that under these rules a block with default

declared 'NEW* would not be able to access any vari-

ables outside that block. Therefore, we have devised

additional rules, which apply irrespective of any de-

fault declarations or 'NEW* declarations currently in

effect:

(1) If a symbol is declared 'NOTNEW' in a given

block, then it is treated as if it were refer-

enced in the next outer block.

(2) It a symbol is declared 'GLOBAL', then it

xs treated as if it were declared 'NOTNEW

in that block and each surrounding block.

(3) If there is no next outer block as stated

in (1) and (2) above, then the variable be-

longs to the outermost block.

Although MAD/I hc.g not yet been used extensively,

most of these rules have proved useful and have elimin-

ated much writing of declarations in some cases. Typi-

cally, the scope rules of block structure are used to

allow the writing of relatively independent sections

of program which are to be part of the same compilation.

The block structure allows tne user to write the sec-

tions without worrying that two variables in different

sections may accidentally have the same name. In ALGOL

the variables in the two blocks would be declared in

their own blocks, and those that are intended to be

common would be declared in the next outer block. In

MAD/I the programmer has the freedom of not declaring

all variables in such blocks; instead he declares

'NEW' 'DEFAULT' in each independently written block.

Then all variables referenced in each block belong to

that block unless declared 'NOTNEW'. This combination

of rules gives the user the advantages of both the

block structure and the default declaration facility.

In the left-hand column below are several blocks

representing the skeleton of a complete MAD/I program.

All references are indicated by occurrences of variable

names. All declarations are indicated. The right-

hand column contains comments about items to the left.

lf>

'PROCEDURE' MAIN;

• • • A • • •

'BLOCK'

• • • A • • •

'DECLARE' B;

'DECLARE' C;
'NOTNEW C;

'BLOCK'
1 DECLARE''DEFAULT'

• • • A • • •

• • • O m • •

'DECLARE' C;

' END ;

'BLOCK'
'DECLARE''DEFAULT'

'CHARACTER'(256)
• • • A • • •

Block 1 begins. Main is im-
plicitly declared 'ENTRYPOINT'
mode.
This variable A is not de-
clared, so it belongs to the
outermost block and has de-
fault mode of 'FLOATING'.
The beginning of block 2.
This block has no default
declared for it.
This is the same A as in
block 1.
B is new to this block, and
will have the default mode,
'FLOATING'.
Despite the declaration, C
is not new to block 2, but
belongs to block 1, and has
default mode.
Block 3 begins.

' INTEGER'; There is a new default for
this block, but 'DEFAULT'
has not been declared 'NEW.
Since it is only referenced
here, this A is the same as
in block 1 and 2.
Since it is not declared in
this block, B is the same as
in block 2.
C is new to this block and
has default mode of 'INTEGER'.
The end of block 3.

'NEW

'DECLARE'
'DECLARE'

'END';
' DECLARE'

B 'FLOATING';
D ' NOTNEW ' BOOLEAN'

D;

The beginning of block 4.
This block does have its de-
fault declared 'NEW.
As a result, this A is a
new variable even though it
is only referenced in the
block; it has the default
mode of * CHARACTER'(256).
B is new to this block.
'; D is the only variable
referenced in this block
which does not belong to the
block. It belongs to the
next outer block.
The end of block 4.
This is the same D as in
block 4. D belongs in this
block instead of the next

//

outer one because of this
declaration.

'END'; End of block 2.

•END'; End of block 1.

In this example have two distinct As, two distinct Bs,

and two distinct Cs. Of course this example looks

rather complicated, because no other program details

are supplied to make it look more natural, and because

it attempts to illustrate many rules with one example.

It is interesting to point out, for procedures in

MAD/I, that entry points to a procedure fall inside the

'PROCEDURE1 ... 'END' brackets, and are implicitly de-

clared to be 'ENTRYPOINT' mode. According to the strict

rules specified above, these entry points would be "new"

variables in the block and thus not known outside the

block, definitely an undesirable situation! Thus there

is also an implicit 'NOTNEW* declaration on each entry

point specified in the prefix of a 'PROCEDURE* statement.

4. THE ORGANIZATION OF THE COMPILER

This section discusses the organization of the

compiler so that the algorithm given in the next sec-

tion will be seen in the proper context. The compiler

makes two passes over the source program, in which it

collects all declaration information, parses the source

text, resolves all default information for symbols refer-

enced by the programmer, and straightens out all block

structure information. Between the two passes there

is a symbol-table-processing phase.

The first pass does most of the work. Briefly,

it parses the input character stream into "symbols,"

parses the program in symbol form, and expands the

parsed symbols into "n-tuples" of the form of an oper-

ator followed by zero or more operands. The n-tuples

become a new representation of the source program.

For example, A:=B+C might be transformed into

+,%T1,B,C;

:=,%T2,A,%T1;

where the percent symbols are user-generated temporary sym-

bols. The algorithm described below assigns data types

to the symbols A, B, and C (but not tn the temporary

symbols). Also, if several variables named A are de-

clared, the algorithm will determine which variable

named A is represented by any given instance of the

Symbol A.

The major problem encountered in scanning the

input text is that after a symbol has been found which

could represent a variable, nothing more may be known

about it until the end of the block is encountered.

This is because declarations about a variable, if there

are any at all, may occur anywhere in the block. By

the end of the block it is possible to determine whether

a given symbol referenced in the block represents a

variable belonging to the block. To solve this problem,

we need to know (1) what, if anything, has been explicitly

declared about the symbol, and (2) whether a 'DEFAULT'

has been declared 'NEW* for the block. A second problem

is that attributes cannot be completely assigned for

any variable until all the attributes of the default

for that block are known. But the attributes of the

default cannot always be known until they are known for

the default of the next outer block. Thus, since the

last statement of the program might be the declaration

of the default of the outermost block, the whole pro-

gram has to be scanned before defaults can be applied

to the variables.

Let us examine in more detail what happens to a

specific symbol during the processing of the program.

When a symbol which can represent a variable is first

encountered, all that can be done is to save its name

and note that it was referenced in the block currently

77

being scanned. We cannot know whether it represents

a variable belonging to that b'ock until the end of the

block has been found. Furthermore, we cannot know

whether it belongs to that block even if a declaration

occurs for it, since a subsequent 'NOTNEW or 'GLOBAL'

declaration might occur for it in that block. More

particularly, we cannot know whether it represents

the same variable or a different variable from the sym-

bol of the same name found in the next outer block.

Note that if we are to produce n-tuples while parsing

the input text, we must represent a variable in the

n-tuple by a pointer to the symbol for that variable,

at the very least. We cannot include which block it

belongs to, however, since that is not known yet.

Therefore we must either (1) assume which block it

belongs to, and correct that assumption later if it

is incorrect, or (2) not bother to assume which block

it belongs to, and correct the n-tuples some way later.

No matter what is done initially, however, the n-tuples

must somehow be corrected later. The method of doing

so, of course, depends upon how the symbol is repre-

sented in that n-tuple. In the first implementation

of MAD/I we have chosen to have the representation of

the symbol in the n-tuple always point to the same

"main symbol table" entry for that symbol. Then, in

the second pass, the n-tuple is made to point to some

other symbol table entry, if necessary.

Let us assume that something was declared about A

in an outer block and then something else was declared

about A in the next inner block. If A is subsequently

declared 'NOTNEW in the inner block, then the two de-

clarations must refer to the same variable. If the

•NOTNEW does not occur, then the declarations refer

to two different variables. In the present implementa-

tion of MAD/I,the symbol table entries carry the de-

claration information. We thus need a way of keeping

separated the information of the two declarations about

A until it can be determined definitely whether they

should be separated or not. (Note that it is not ille-

gal to have several declarations about the same variable

in MAD/I. Requiring all information about a variable

to be made in the same declaration statement might sim-

plify some of the declaration-processing problems but

it would lessen the convenience to the user.)

5. THE BLOCK STRUCTURE ALGORITHM

Several routines can be called upon to perform

various functions when the compiler is scanning the

descriptors before and during parsing. The algorithm

will describe these routines and the circumstances

under which they are called. A particular symbol can

have associated with it several variables whose names

are the same, but at most one variable per block. The

job of this algorithm is to determine to which blocks

such variables belong, and then to map the symbols in

the n-tuples which result from the parse into the proper

variables for that point in the program.

At any point during the scan of the input descriptors,

a symbol can be in one of four states with respect to a

block; "unreferenced," "referenced," "declared," and

"not new." For the declared state there is a variable

associated with that block. This is not true for the

other three states except when the block is the outer-

most block. The outermost block is a special case, of

course, since it is not surrounded by another block. In

the outermost block a variable must be in one of the

first three states; i.e., it cannot be in the "not new"

state.

Note that in TL/I-like languages, a symbol like IF

can represent either a variable or a statement keyword.

/6

depending upon context, and the dilemma must be reeoiveo

before this algorithm will work. In NAD/I this is not a

problem, since keywords and variables are represented by

distinct lexical classes. Subsequently we will assume

that this problem has been solved for any given language,

and we are considering only symbols which represent vari-

ables.

A "referenced" symbol in a block is one which has

been encountered in that block but for which no declara-

tions of any type have occurred, including 'NOTNEW* and

'GLOBAL*. A symbol is termed "declared" when it has

been declared in the block but not declared 'NOTNEW* or

'GLOBAL*. A variable is created for it which is a

carrier of mode and other declared information. A sym-

bol in a "not new" state has been declared 'NOTNEW1 or

* GLOBAL* in that block, and its status with respect to

that block cannot be further altered. A symbol cannot

have "not new" status with respect to the outermost

block since that status indicates that it is a symbol

which belongs to a block surrounding the one under con-

sideration, and which cannot be declared to belong to

that block.

When Lite beginning of a ulock is encountered a

routine called BEGINBLOCK is called which pushes down

the status of all symbols of -he current (old) block,

if any, and sets the status of all variables to

*unr»fT«nc«o." FUFtKiyprocwruy^n tun nan ■■■■!!

may than proceed.

Whan a ■ymbol it ancountarad In a block it is

paasad to a routina callad SETREP. If tha tymbol is

in "unrafarancad" status it is sat to "rafar^noad" status

for that block, otharwisa nothing is dona.

Whan a symbol is daclsrad in a block, axcapt for

a daclaration of 'NOTNElf or 'GLOBAL', it is passad to

tha 8BTDBCL routina. If tha symbol is "c.aclarad" in

tha block nothing is dona. If tha symbol is "unrafar-

ancad" or "rafaranvwd" in tha block, than a variable

is created for that block with the name of the symbol,

and the symbol is set to "declared" status. Note that

declaration information is always applied to the first

variable encountered for the symbol when the search is

made outward from the current block to surrounding

blocks. Thus the declaration information, if any, which

is associated with the declared symbol is to be applied

only after SATDBCL has bawa celled. If the symbol is in

"not new" status, a search is made outward, successively

through surrounding blocks until the symbol is found in

other than "not new" status. Then the symbol is treated

with respect to that block in the aasw manner as an

"unreferenced," "referenced," or "declared" symbol would

be for the current block. The variable that results from

the SETDBCL operation is the one to which the original

J9

declaration Information was assigned.

When a symbol is declared 'NOTNEW in a block it

is passed to a routine called SETNOTNEW. At this point,

one of three situations will occur:

1. If the symbol is already "not new" or if the

symbol is 'DEFAULT', or if the current block

is the outermost block, nothing is done.

2. If the symbol is "unreferenced" or "referenced"

it is set "not new" in the current block. A

search is then made outward through the con-

taining blocks and the status of the symbol is

determined for each block, until the symbol

is found in other than "not new" status. If

that status is "unreferenced" then it is set

wO "referenced."

3. If the symbol was in "declared" status when

SETNOTNEW was called then it is set to "not

new" status in the current block. A search

is made outward through all the surrounding

blocks until the symbol is found in other

than "not new" status. If that status was

"unreferenced" or "referenced" it is changed

to "declared" status, and the variable of the

the symbol for the current block is used as

the variable for the symbol in the outer block

where the search ended. If the search ended

2(0

on a variable with a "declared" status then

we have an interesting situation 01 two vari-

ables in existence which should be replaced

by a single variable for the outer block.

These variables will have to be "merged."

Any declarations declared on the inner vari-

able must be copied over to the outer variable,

with appropriate error comments if conflicts

rre discovered. In the case of MAD/I a vari-

able may be declared only once with mode infor-

mation; an attempt to do so more than once

causes an immediate error comment, except in

the case where the two variables are being

merged into one, as above, due to the 'NOTNEW

declaration. If modes were declared for each

of the variables before they were merged the

conflict will not cause an error comment until

the 'NOTNEW declaration is encountered.

When a symbol is declared 'GLOBAL1, SETNOTNEW is

called for that symbol for the current block and for

each surrounding block. Hence, SETNOTNEW has a block

as one of its arguments.

The actions of the above-described routines deter-

mine, as closely as possible, the status of symbols

within a block by the time the end of that block is

A/

reached. The end of the block triggers a call on the

routine ENDBLOCK which will complete the determination

of the status of all symbols which have variables in

the block. In the outermost block, the action is sim-

ple: the symbols referenced in the block are made into

variables with "declared" status. If it is not the

outermost block, then the symbols "referenced" in the

block are treated in one of two ways:

(1) If 'DEFAULT' is declared for the block, in-

cluding the attribute 'NEW, then all the

"referenced" symbols are made "declared"

symbols for the block, and variables are

created for each such symbol.

(2) If 'DEFAULT' was not declared 'NEW in the

block, the status of "referenced" symbols

is checked against the next outer block,

since these symbols belong there.

If a symbol is "unreferenced" in the next outer

block, it is set to "referenced." After one of these

two actions is done, we are finished with the inner

block, and the status of all symbols is "popped" back

to that of the next outer block.

When a program has been completely scanned, each

variable will have been assigned to its appropriate

block. It is then possible to go through the blocks

from the outermost to the innermost to supply default

w

information for those variables. It is also possible

to go through the parsed form of the program, replacing

each occurrence of a symbol with the appropriate variable

for that block. This process is called the "remap" phase

in the current MAD/I compiler. There is no restriction

on whether remapping or default assignment is done first

as far as the algorithm is concerned. The method of de-

fault assignment on a block and variable basis was de-

scribed in Section 2. The method of remapping is de-

scribed below in fairly general terms.

Many "tricks" could be used for implementing the

described routines, for the method of representing sym-

bols and variables, for remapping and for default assign-

ment, but these tricks all depend upon the representation

of descriptors, the method of parsing, the sort of de-

clarations to be stored and the method of storing, etc.

These details, in turn, depend on the language and the

particular compiler implementation. In the case of MAD/I,

as the present implementation of the compiler and language

evolved, it almost always increased rather, than decreased,

in complexity, and hence it is presently difficult to

debug.

The remap phase assumes that the beginning and end

of each block are easily spotted in the parsed form, and

that there is an easy way to search through the parsed

form such that the beginning and end of each block are

A3

encountered in the same order as in the scan to produce

calls on BEGINBLOCK and ENDBLOCK, and such that the

symbols previously encountered within a given block are

again encountered in that same block. Assume that if

we have a symbol representing a variable then we can

easily find a place to look for the current variable

representing that symbol. Let us assume that there is

a field within the symbol which can point to the vari-

able. Also assume that there is a similar field asso-

ciated with each variable of each block, and that the

field initially points to itself. At the beginning of

each block, for each variable belonging to that block,

exchange the symbol field with the variable field. At

that point, the symbol points to the current variable.

At the end of the block perform the same exchange. As

we progress through the parsed program the symbols will

effectively be pushed and popped properly so that when-

ever a symbol is encountered we can replace it with the

variable it represents at that point. This is a workable

alternative to the one of keeping a pushdown stack for

each symbol, the current variable being at the top of

the stack. Both of these approaches assume that remapping

would be more expensive if we simply searched the blocks

outward from the current block until a variable of the

right name is found.

6. CONDITIONAL DECLARATION HANDLING IN MAD/I

A conditional declaration is one which is applied

when a variable appears in a certain context, unless

that variable has had an explicit declaration which

would conflict. There are a number of such declara-

tions in PL/I. In MAD/I there is presently only one.

If the "." operator has been used on a variable (the

function call operator), then there is a conditional

declaration applied to the variable. The declaration

says that if no mode or storage class information has

been declared cibout the variable, then it is to be taken

as an 'EXTERNAL' 'ENTRYPOINT', which returns a value of

default moue when called. Tims it is the name of an ex-

ternally compiled subroutine. Notice that the explicit

declarations are applied first, then conditional declara-

tions, if any, and finally default declarations. This is

also the usual order in PL/I.

Conditional declarations are handled somewhat differ-

ently from other declarations because of the convention

that a conditional declaration does not imply that a

variable has been declared "new" to a block. Conditional

declarations have no influence in determining what block

the variable resides in. This is contrary to the effects

of all other declarations. Therefore the previously de-

scribed algorithms do not work for conditional declarations.

mat

Such declarations are easily handled, however, in the

following manner:

When a conditional declaration is discovered, it

is saved in some way on a list associated with the cur-

rent block, as is the symbol to which it will condition-

ally apply. After the end of the block is encountered

and it is closed out (so that the variables that belong

to the block are known), the list of conditional declar-

ations is searched. For each symbol on the list there

is either an associated variable that now belongs to

the block, or else there is not. If there is such a

variable, then the conditional declaration belongs with

it. Otherwise, the symbol and conditional declaration

are put on the list for the next outer block.

7. SOME IMPLEMENTATION DETAILS

This section discusses some details of the imple-

mentation of the block structure algorithm in the pre-

sent version of the MAD/I compiler.

In the MAD/I compiler, symbols and variables have

the same form. The symbols themselves are used as vari-

ables for the outermost block, thus economizing storage.

Associated with any block are three lists, one each for

symbols which are "referenced," "declared," and "not new."

In addition, in each symbol there is a two-bit field

which specifies which of the four states the symbol is

in. Each block points to the next outer block, thus

facilitating popping back to or searching to the next

outer block. At any given time the symbol carries the

current information declared about the current variable

associated with that symbol. Any previously specified

variable associated with that symbol in an outer block

has its information pushed down in some fashion. Thus

the symbols which are declared in a block must have

their contents appropriately popped at the end of each

block. In any case, as long as a call is made on SETDECL

before applying the declaration information, the declara-

tion information associated with a symbol can be stored

with the symbol itself, and it is not necessary to

search for an associated variable at that time. This

S4

is carried out according to how pushing and popping

are done; however, such details are outside the scope of

this paper.

However, the method of copying attribute information

from default symbols is relevant. Associated with each

mode are two routines, each having two arguments, a

"from" variable and a "to" variable. The intention is

to copy information from one to the other under certain

circumstances. One routine is used when the "to" vari-

able has no mode information, in which case the infor-

mation is copied to it from the other symbol (which may

be the default symbol or a subtype of the default symbol).

The other routine is used to copy mode information when

the "to" symbol already has mode information. In that

case the "from" symbol may be used to copy information

to a subtype of the "to" symbol which does not have mode

information. Needless to say, the routines are recursive.

Another routine, let us call it CüPYATRS, selects one

of the two routines just described and decides which

mode to use. The routines are also used to set informa-

tion (associated with a mode) which was not explicitly

declared, such as length or dimension information.

The action of COPYATRS is described here, with two

arguments, FROM and TO.

1. If TO has a mode, then select the "to" routine

for that mode and pass to it FROM and TO as its

arguments. Exit upon return of control from the

"to" routine.

2. If TO has no mode set, then select the "from"

routine associated with the mode of the FROM

symbol. Exit upon return from the "from" rou-

tine. Note that there will always be a mode

on the FROM symbol (If everything is properly

debugged).

Consider the "from" routine for an array mode, and

call the routine FROMARRAY. This routine is called when

its TO symbol has no mode, and thus the job of FROMARRAY

is to copy the FROM symbol Information to the TO symbol.

Therefore it will copy the array mode, the dimension

Information, and any other 'node-associated information

to the TO symbol. It will create a symbol-like construct

associated with the TO symbol which is to carry mode in-

formation for the component mode of TO. Let us denote

the carrier by component-of-TO; there is a similar

carrier for component-of-FROM. Then a call on COPYATRS

(component-of-FROM, component-of-TO) is made to copy

the component information. It will always work out

that the data type information for the FROM symbol will

be complete.

Consider the "to" routine for an array mode, and

call the routine TOARRAY. This routine is called when

the TO symbol already has a mode, and that mode is array

mode. The job of TOARRAY is to r^t any remaining unde-

clared Information about the TO symbol. For example, if

suffix (i.e. dimension), information was omitted .txom.— -'

the array declaration, then default information would

be set for it. (In MAD/I such information is associated

with the mode and not taken from a default which can be

declared about arrays. There is no way presently in

MAD/I to say that the default dimensions of an array

are to be 3 x 3, for example. In principle this would

be possible, however.) Next the TO symbol is examined

to see if it has a component mode carrier, and if not,

it is attached to the TO symbol. Whether or not the

carrier was there before, a call is made on COPYATRS

(FROM, component-of-TO). This will cause defaults to

be set on the component-of-TO symbol, if needed.

Obviously, if the modes Involved had no components,

then the associated "from" and "to" routines would be

simpler. The "from" and "to* routines may do other jobs

also, such as returning length and alignment information

to their caller. Thus the initial caller of COPYATRS

would call it with a symbol to be allocated, as the TO

symbol, and the 'DEFAULT* symbol as the FROM symbol. It

would get in return the length and alignment of the TO

symbol. Notice that the COPYATRS routine is also used

to set the information on the default symbol itself.

When starting allocation of variables in a block, first

COPYATRS is called with FROM being the default of the

next outer block (which has already been taken care of),

and TO being the default of the current block. For

the outermost block there is nr next outer block, so

a special PROM symbol is used which has the "default

default," i.e., the default mode which is used if none

is declared in the outermost block.

8. CONCLUSION

Everything described in this paper has been success-

fully implemented in a compiler for the NAD/I language

which runs on an IBM/360 model 67 under the University

of Michigan timesharing system, MTS. For various reasons

which are not relevant here it is a very large compiler.

Since the system provides very large virtual memory for

execution (about four million bytes), the compiler is

written to take advantage of a large virtual memory.

MAD/I was also written mostly in an experimental compiler

implementation "macro" language, which allows easy modi-

fication of the compiler, even at run time, for those

who know the incredible intricacies of the compiler.

These factors, of course, have influenced the implemen-

tation of tue block structure and default facilities.

Nevertheless, it is felt that what we have learned about

these facilities may be useful to compiler implementers

whose design requirements impose very different con-

straints on their compilers.

3f

UNCLASSIFIED 3a.
»•COftty CUtiiftc«tiön

Ji»
oocuMror COMTROL DATA - R & C

r almatlflmlön et till: bitdv »: . .»jrwf>«grfJi|(<j»»/l|^ ^. iiirffrHtiiil'irtflJMfni>{fi'";_
1. OAIOINATINO ACTIVITY (Carporar* milhot)

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT •

t' DVarail rviiun -^ cJost i.'iefa'..
2M. .*Z?CM-; S£ = bS,TY CLASSIFICATION

Unclassified
j Sb. SWÜP
i

I. NKPORT TITLE

DEFAULTS AND BLOCK STRUCTURAL TfflflUtöJ'I LANGUAGE

«. OttCNI^TIVC NOT« (Typo ol npori «nJ im.xtiv« tfMMI •- •• .<

Memorandum 31 ' ' "t't „
W»W*"

i. AUTMONIS) (Fif«l nMM. miMi« miria/, Jaai Mm«)

Allen Springer
4 u. ,..^ ■.!.',..

"TT wnar f. RC^ORT OATI

July 1970
Al. MO. OF PAO£S

32
rh. SO. OF RBFS

1 3
la. CONTRACT OR OKANT NO.

DA-49-083 OSA-3050
b. RROJICT NO.

£a. ORIOINATOR'S REPORT NUMBERISI

Memorandum 31

i
•ft. OTHER REPORT NOIS) (Any oihtr numbar« thai may b» aac/fiMd

IM» nporl)

W. OtSTRIBUTtON STATEMENT

Qualified requesters may obtain copies of this report from DDC.

II. «U»»LEMCKT»RV NO'B* :L SPONtORINC MILITARY ACTIVITY

• ».'
Advanced Research Projects Agency

11. AMTRACT

This paper describes the default and block structure mechanisms
of MAO/I, a PL/I-like language, and the interaction of these
mechanisms with the three types of MAO/I declarations: explicit
declarations, default declarations, and conditional declarations.
MAD/I allows the programmer extraordinary control over the de-
fault assignment of data types to variables, and also allows the
programmer more than usual contrdlr-over the scope of variable
names in olocx structure, ttur interaction of these two facili-
ties can make the handling of.declaration information a difficult
problem. This paper outline's an algorithm in which this informa-
tion is processed "on the« fly" in« tihe first pass of the compiler
over the source program, and then the symbol table is processed
to assign defaults and allocate storage« A simple second pass
over a transformed versioq,^ the source text resolves the scope
and interpretation of variab^f names../

:'". if** ■'.* ■■>■
'• .%■,■......»,.,

* .u- -. •

DO POSM
I MOV •• 1473 UNCLASSIFIED

toearUy CUtaificatien

unclassified
Rcüfjty CUMift' IciUön

33
i«.

KKY WOROt
LINK A

note
LINK |

ROLE .Sou,
UgK£

WT

MAD/I
PL/1
defaults
declarations
block structure

Unclassified
Security Classification

